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Theoretical continuous equation derived from the microscopic dynamics for growing interfaces
in quenched media
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We present an analytical continuous equation for the Tang and Leschhorn model@Phys. Rev. A45, R8309
~1992!# derived from their microscopic rules using a regularization procedure. As well in this approach, the
nonlinear term (“h)2 arises naturally from the microscopic dynamics even if the continuous equation is not the
Kardar-Parisi-Zhang equation@Phys. Rev. Lett.56, 889~1986!# with quenched noise~QKPZ!. Our equation is
similar to a QKPZ equation but with multiplicative quenched and thermal noise. The numerical integration of
our equation reproduces all the scaling exponents of the directed percolation depinning model.

PACS number~s!: 68.35.Fx, 47.55.Mh
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The investigation of rough surfaces and interfaces has
tracted much attention for decades due to its importanc
many fields, such as the motion of liquids in porous med
growth of bacterial colonies, crystal growth, etc. When
fluid wets a porous medium, a nonequilibrium self-affi
rough interface is generated. The interface has been cha
terized through scaling of the interfacial widthw5^@hi

2^hi&#2&1/2 with time t and lateral sizeL. The result is the
determination of two exponentsb and a called dynamical
and roughness exponents, respectively. The interfacial w
w;La for t@t* andw;tb for t!t* , wheret* 5La/b is the
crossover time between these two regimes. Much effort
been done to understand the leading mechanisms of t
processes and to try to explain how the dynamics affects
scaling exponents@1#. The formation of interfaces is dete
minated by several factors, it is very difficult to discrimina
theoretically all of them. The knowledge of the dynamic
nonlinearities, the disorder of the media, and the theoret
model representing experimental results are difficult to ov
come due the complex nature of the growth. The disor
affects the motion of the interface and leads to its roughn
Two main kinds of disorder have been proposed: the ‘‘
nealed’’ noise that depends only on time and t
‘‘quenched’’ disorder due to the inhomogeneity of the me
where the moving phase is propagating. The discrete mo
provided a useful approach to obtain the exponents tha
lows its classification in universality classes. By extensiv
studying these models, one can obtain the scaling behav
and the corresponding universality classes and then asso
the continuous stochastic equations with the given disc
growth models.

The most used method of establishing the corresponde
between a continuous growth equation and a discrete m
is to numerically simulate the model and compare the
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tained scaling exponents with those of the correspond
continuous equation. In this context, attempts are being m
to classify quenched disorder models in terms of universa
classes based on an equation of motion such as

]h~x,t !

]t
5 F1n¹2h1

l

2
~“h!21j~x,h!1h~x,t !, ~1!

whereF is the driving force responsible for the advance
the interface,j(x,h) is the quenched disorder or pinnin
forces, andh(x,t) is the thermal noise. The noises are whi
Equation ~1! is Kardar-Parisi-Zhang equation@2# with
quenched noise~QKPZ!. When l→0, the quenched
Edwards-Wilkinson equation@3# is recovered. In absence o
quenched noise, their thermal versions are recovered, na
TKPZ and TEW equations, respectively. Much effort h
been made in order to classify discrete models and exp
ments in universality classes depending on the value of
coefficientl associated with the nonlinearity of the QKPZ
Numerical@4,5# and analytical@6# studies indicatel is rel-
evant at the depinning transition for discrete models in
isotropic media. These results only show that the nonlin
term exists but they do not confirm that these models
represented by the QKPZ. However, the exponents obta
by numerical simulation of Eq.~1!, without thermal noise
@7#, agree very well with those of the model in anisotrop
media.

A powerful method of establishing the corresponden
between a continuous growth equation and a discrete m
is to derive the continuous equation from a given discr
model analytically. Among them, a systematic method p
posed by Vvedenskyet al. @8#, where the continuous equa
tions can be constructed directly from the growth rules of
discrete model based on the master-equation description
been applied to the derivation of growth equations for so
discrete models@8–11# with thermal noise. This method ha
proved to be useful to derive continuous equations from
master equations with the advantage that the sources o
terms of the Langevin equation can be identified and
parameters related to the microscopic dynamics. Howeve
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PRE 62 3921THEORETICAL CONTINUOUS EQUATION DERIVED . . .
is easier to achieve the same results using a microsc
equation based on rules for the evolution of the height. T
derivation of continuous equations from discrete models
an interesting subject that has not been addressed in the
text of growth in the presence of quenched media.

The aim of this work is to obtain the continuous equati
from the microscopic dynamics of a variant of the direct
percolation depinning~DPD! model @12,13# in order to es-
tablish if it is related in some way to the QKPZ equatio
The main goal of our paper is to have obtained analytica
the differential equation that describes the dynamics of
Tang and and Leschhorn model@12#. To our knowledge this
is the first time that a Langevin equation has been obtai
from the microscopic dynamics in quenched media.

As we shall show below, the dynamics of the height
strongly affected by amultiplicative quenched noise. We
chose this model because it presents the principal feature
some experiments like the imbibition of a viscous fluid in
porous media driven by capillary forces@13,14#. In the TL
model, the interface growth takes place in a square lattic
edgeL with cells of sizea that represents the mean size o
pore. Consider each cellr is assigned a random pinning forc
g(r ) uniformly distributed in the interval@0,1#. For a given
applied pressurep.0, we can divide the cells into two
groups, those withg(r )<p ~free or active cells!, and those
with g(r ).p ~blocked or inactive cells!. Denoting byq the
density of inactive cells on the lattice, we haveq512p for
0,p,1 andq50 for p>1. In this model the critical pres
sure is pc50.461. Periodic boundary conditions are use
We consider the evolution of the height of thei-th site in this
model. Let us denote byhi(t) the height of thei-th generic
site at timet. The set$hi ,i 51, . . . ,N%, whereN5L/a, de-
fines the interface between wet and dry cells. Given a s
chosen betweenN, say the sitej, the height in the sitei is
increased bya with probability ~i! 1 if j 5 i 61 and hi 61
>hi12a and hi,hi 62, ~ii ! 1/2 if j 5 i 61 and hi 61>hi
12a and hi5hi 62, ~iii ! 1 if j 5 i and hi,min(hi21,hi11)
12a and Fi(hi1a)51. Otherwise no growth happen
Fi(hi1a)5Q„p2gi(hi1a)… is called the activity function
@15# andQ(x) is the unit step function defined asQ(x)51
for x>0 and equals to 0 otherwise,p is the microscopic
driving force- andgi(hi1a) is the quenched noise jus
above the interface distributed in the interval@0,1#. Notice
that the activity functionF is the competition between th
driving force and the quenched noise, soF is also a ‘‘noise.’’
Provided that the system size is large and that the intrin
fluctuations are not too large@8#, the evolution equation for
the height in a sitei, in a short lapset, is

]hi

]t
5

a

t
Gi1h i , ~2!

wheret is the mean lapse between successive election of
site andGi @15# contains the microscopic growing rules fo
the evolution of the height at this site due to that a sitej is
chosen at timet. Hereh i is a Gaussian ‘‘thermal’’ noise with
zero mean and covariance

^h i~ t !h j~ t8!&5
a2

t
Gid i j d~ t2t8!. ~3!
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Notice that in the notation of@8# the transition rate from a
configuration H to another H8 is W(H,H8)
5(1/t)(kd(hk8 ,hk1a)Gk) j Þkd(hj8 ,hj ). So the first mo-
ment is (1/t)(H8(hk82hk)W(H,H8)5(a/t)Gk . As a conse-
quence of the fact that subsequent configurations differ o
in the height at one site all the moments are diagonal
proportional to the first moment@10#.

For this model@15,16#,

Gi~hi 21 ,hi ,hi 11!5Wi 111Wi 211Fi~ uhi u11!Wi , ~4!

whereuhi u[@hi /a# denotes the integer part ofhi in units of
a. This definition is unnecessary ifa is taken as one, as in th
discrete model. We shall show below that in the continuo
limit, it is necessary for an analytic extension of the activ
function. In Eq.~4!,

Wi 615 1
2 @12Q~Hi 62

i !1Q~Hi
i 62!# Q~Hi

i 6122!,

~5!

Wi512Q~Ui22!,

where Hr
s5(hs2hr)/a and Ui5(1/a)@hi2min(hi11,hi21)#.

Notice that all the heights are in units ofa in order to keep
the arguments of the step function without units. ForWi 61
@15# the d Kronecker function has been taken as

d~x,y!5Q~x2y!1Q~y2x!21. ~6!

Using the fact that min(x,y)51
2$(x1y)2(x2y)@Q(x2y)2Q(y

2x)#% and with a more compact notation

Ui5
1
2 $Hi 11

i 1Hi 21
i 1Hi 21

i 11 @Q~Hi 21
i 11!2Q~Hi 11

i 21!#%.
~7!

The representation of the step function can be expan
asQ(x)5(k50

` ckx
k providing thatx is smooth. Our focus is

on properties of the surface on large length scales, so we
the expansion of the step function to first order in his arg
ment. The next step is to regularize the height defining
interpolating function. This is done by expanding the heig
hi 1 l[h(xi1xl) aroundxi5 ia. Retaining only the leading
terms in the expansion, the adimensional difference
heights is

Hi 1m
i 1 l 5~ l 2m!]xhcxi

1 1
2 ~ l 22m2!]x

2hcxi
a1O~a2!, ~8!

where]x
j h5] jh/]xj .

Notice that in any discrete model there is in principle
infinite number of nonlinearities, but at long wavelengths t
higher-order derivatives can be neglected using scaling a
ments, since one expects affine interfaces over a long ra
of scales, and then one is usually concerned with the form
the relevant terms.

Replacing Eq.~8! in Eqs.~5! and~7!, using the expansion
of the step function and retaining the leading terms to or
O(a), Eq. ~2! can be written as

]h~xi ,t !

]t
5

a

t
@W~xi1a!1W~xi2a!

1W~xi ! F~xi ,uh~xi !u11!#1h~xi ,t !, ~9!
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with

W~x1a!1W~x2a!5~c022c1!14c1
2 ~]xh!2

1ac1@ 1
2 14~c022c1!# ]x

2h,

~10!

W~x!512~c022c1!24c1
2 ~]xh!21 1

2 ac1 ]x
2h. ~11!

Notice that the argument ofF5Q@p2g„xi ,uh(xi)u11…# is
not smooth, so its expansion is meaningless. In order to
tend the definition of the activity functionF to the continu-
ous, we construct an interpolation function

F̃@xi ,h~xi !#5F~xi ,uhi u!1
dh

a
@F~xi ,uhi u11!2F~xi ,uhi u!#

1O~dh2!, ~12!

with 0<dh<a that measures the departure of the hei
from the low pore. ThenF̃ is a smooth function taking con
tinuous values in the interval@0,1#. With this definition we
ensure that the characteristic size of the correlation betw
pores is of the order of the pore size. In real materials th

FIG. 1. Log-log plot of the square roughnessw2 vs time forC
51.3. In ~a! p50.1, for this value ofC the critical pressure ispc

.0.1. The circles show the results obtained from the numer
integration of Eq.~13!. The dashed line is used as a guide and
exponent 2b51.34. In ~b! p50.3, the dashed line has slope 2b
51.34 and the solid line has slope 2bm50.66. The numerical inte-
gration has been done withL51024 and over 30 independen
samples.
x-

t

en
re

always exists a typical size of the inhomogeneities in
disordered media that plays the role of the lattice constana.

The final step is a coarse-grained spatial average of
variables in order to obtain smooth continuous functions a
macroscopic level. In this way we obtain the stochastic c
tinuous equation for this model,

]h

]t
5m~ F̃ !1n~ F̃ !]x

2h1l~ F̃ !~]xh!21h~x,t !, ~13!

where

m~ F̃ !5@~c022c1!~12F̃ !1F̃#
a

t
, ~14!

n~ F̃ !5c1@ 1
2 ~11F̃ !14~c022c1!#

a2

t
, ~15!

l~ F̃ !54 c1
2 ~12F̃ !

a

t
. ~16!

andF̃[F(x,h) as was defined in Eq.~12!. Notice thatm(F̃)
is now the effective competition between the driving for
and the quenched noise. The coefficientsm, n, andl take
different values at each point of the interface.

Equation~13! shows that the nonlinearityarises naturally
as a consequence of the microscopic model. Our result i
agreement with those of Re´ka et al. @5# who obtained nu-
merically a parabolic shape of the local velocity as a funct
of the gradient for the DPD model near above the critica
for different reduced forces (p/pc21). In order to interpret
the expressions ofm,n,l it is necessary to introduce a con
tinuous representation of theQ function. The best choice is
the shifted hyperbolic tangent@10#, defined asQ(x)5$1
1tanh@C(x1b)#%/2, whereb is the shift andC is a parameter
that allows us to recover theQ in the limit C→`. We
chooseb51/2. The reason for our choice is that it allows
to define thed function as Eq.~6!. The coefficients fulfill

c05
1

2 F11tanhS C

2 D G andc15
C

2
cosh22S C

2 D . ~17!

al
s

FIG. 2. Log-log plot ofC2(r ) as a function ofr for p50.1 and
C51.3. The dashed line that is used as a guide has slopea
51.28.
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When the conditions~17! are satisfied, the coefficientn is
always positive. The coefficientl is greater or equal to zer
independently of the representation of the step function

the limit p→0, the TKPZ equation is recovered takingF̃
50. Far above the criticality (p→1), the interface moves
without stopping~the effective force is positive and the no
linear term becomes negligible!, so the dynamics is close t
the one described by the TEW equation as we see from

~13! taking F̃51. However, the fact that TEW and TKP
limits are recovered is a specific characteristic of this parti
lar model.

In all cases studied so far~see for example@10#!, the
continuous equations are restricted to some values ofC. In
our case, for the numerical integration, we choose the va
of C taking into account that in the continuous model, ne
the criticality, whereF̃ must be close to zero~notice that in
the discrete model, as we approach to the critical value,F is
mostly zero because the interface gets pinned by long ch
of inactive sites@15,16#!, it is necessary thatm mostly be-
comes negative in order to brake the advance of the in
face. It is precisely this restriction forC that gives a physica
meaning to our continuous equation. In Figs. 1 we show
temporal scaling behavior of the roughnessw obtained from
the numerical integration of Eq.~13!. At the criticality, a
slopeb50.6760.05 was obtained. Above the threshold w
recover a crossover between the exponentb50.6760.05
and thebm.1/3 as was obtained by Leschhorn@7# by means
of the numerical integration of the QKPZ equation and
his automaton version. In Fig. 2 we show the scaling beh
ior of the correlation function C2(r ,t)5^@hi 1r(t)
2hi(t)#2&1/2. The exponent obtained wasa50.64160.07 in
agreement with the DPD models. Figure 3 shows a log-
plot of the global interface velocityv as a function ofp
2pc . A velocity exponentu.0.642 close to the DPD on
was obtained. The numerical integration was made in s
lattices using a discretized version of the continuous eq
tion ~13!. The results in large systems and the details of
integration will be published elsewhere. Notice that even
the exponents from our equation are very similar than
one obtained from the QKPZ one, our equation is very d
ferent. The main difference is that the coefficients of t
nonlinear and the Laplacian terms in our equation
strongly affected by the local characteristic of the subs
tum.
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How could our results be used in order to explain the r
played by the disordered media in the experiments? In
experiments the advancement of the interface is determin
by the coupled effect of the random distribution of the ca
illary sizes, the surface tension, and the local properties
the flow, so it is not surprising that all these effects give r
to a multiplicative noise in any evolution equation that i
tends to represent an experimental growth with disorde
media.

Summarizing, we derive the continuous equation from
microscopic one for the TL model. Our equation allows us
explain that the lateral growth contribution is mainly respo
sible for the roughness near the criticality. In our work, t
nonlinear term arises naturally as a consequence of the
croscopic dynamics. The numerical integration of our eq
tion reproduces very accurately all the scaling exponents
the DPD model. These results show that Eq.~13! describes
the TL model with the advantage that it has been analytic
deduced from the microscopic rules. Despite that the beh
ior of our equation is equivalent to the behavior of the QKP
one, it is formally different. To our knowledge, this is th
first time that an analytical continuous equation derived fr
a microscopic model does not match the phenomenolog
equation that was hoped to describe the model. Finally,
hope that this framework can be used in other growing m
els with quenched noise.

FIG. 3. Log-log plot of global interface velocityv as a function
of p2pc for pc50.11 andC51.3. The slope of the line isu
.0.642.
.
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